Introduction
While traditional LLMs operate purely on text, the next frontier in AI is multimodal modeling—systems that understand and generate across multiple data types such as text, images, video, and audio. Models like GPT-4V, Gemini, CLIP, and LLaVA combine visual perception with language understanding, enabling powerful capabilities including image captioning, document understanding, visual question answering (VQA), and even code generation from screenshots.
Goals for the Week
- Understand the architectures behind vision-language and multimodal LLMs
- Learn about cross-modal embedding alignment and fusion techniques (CLIP, ALIGN, contrastive learning)
- Build systems that generate text from images and query visual content using natural language
- Explore real-world applications: VQA, captioning, OCR, visual grounding, and multimodal RAG
- Evaluate multimodal model outputs for relevance, consistency, and hallucination
Learning Guide
Videos
- Building Multimodal Search and RAG — DeepLearning.AI course on multimodal retrieval with Weaviate.
Optional Short Courses:
- Large Multimodal Model Prompting with Gemini — Practical prompting techniques for vision-language models
- Introducing Multimodal Llama 3.2 — Open-source multimodal model deployment
Articles & Reading
Comprehensive Guides:
- Understanding Multimodal LLMs — Sebastian Raschka’s introduction to architectures and techniques
- Multimodality and Large Multimodal Models (LMMs) — Chip Huyen’s overview of the field’s evolution
- A Multimodal World — HuggingFace’s practical guide
Additional Reading
- Multimodal AI: A Guide to open source vision language models
- Exploring Multimodal Large Language Models
Foundational Papers:
- CLIP: Learning Transferable Visual Models1 — Contrastive language-image pre-training
- Flamingo: Visual Language Model2 — Few-shot learning with vision and language
- BLIP-2: Bootstrapping Language-Image Pre-training3 — Efficient vision-language alignment
- LLaVA: Visual Instruction Tuning4 — Open-source multimodal instruction following
- GPT-4V System Card — Capabilities and limitations of GPT-4 Vision
Evaluation & Benchmarks:
- VQAv2: Visual Question Answering — Standard VQA benchmark | Paper
- POPE: Polling-based Object Probing5 — Hallucination evaluation
- MMBench: Multi-modal Benchmark — Comprehensive evaluation suite
- LLaVA-Bench: Visual Conversation — Instruction-following evaluation
Models & Tools
Commercial APIs:
- OpenAI GPT-4V — Vision capabilities in ChatGPT | Cookbook
- Google Gemini — Multimodal understanding and generation
- Anthropic Claude 3 — Vision analysis and document understanding
- Microsoft Azure Computer Vision — OCR, captioning, object detection
Open-Source Models:
- LLaVA — Visual instruction tuning | GitHub
- BLIP-2 — Efficient vision-language pre-training
- Qwen-VL — Multilingual multimodal understanding
- CogVLM — Open visual expert language model
- Fuyu-8B — Simplified multimodal architecture
Frameworks & Libraries:
- Transformers Vision — HuggingFace multimodal models
- LangChain Multimodal — Chains for vision-language tasks
- LlamaIndex Multimodal — Multimodal RAG and indexing
- Weaviate — Vector database with multimodal support
- OpenCLIP — Open-source CLIP implementations
Evaluation Tools:
- CLIP Score — Image-text alignment metric
- BLEU/METEOR/CIDEr — Captioning metrics
- LMMs-Eval — Unified evaluation framework
- VLMEvalKit — Comprehensive VLM benchmarking
Applications & Use Cases
Document Understanding:
- Donut: Document Understanding Transformer — OCR-free document analysis
- LayoutLMv3 — Multimodal pre-training for document AI
- Nougat — Academic document parsing
Visual Reasoning:
- VisProg: Visual Programming — Compositional visual reasoning
- ViperGPT — Code-based visual query answering
- Visual ChatGPT — Chaining vision models
Video Understanding:
- Video-LLaVA — Video instruction tuning
- VideoChat — Conversational video understanding
- Gemini Video Analysis — Long video comprehension
Programming Practice
Vision-Language Inference:
- Use OpenAI GPT-4V or Gemini to:
- Generate descriptions of diagrams, charts, and UI mockups
- Answer questions about images (VQA)
- Extract structured data from documents (receipts, forms)
- Solve visual puzzles and reasoning tasks
Open-Source Model Deployment:
- Run inference with LLaVA or BLIP-2:
- Caption images from diverse domains
- Rank image-text relevance pairs
- Build zero-shot image classifier using CLIP
- Implement visual search over image gallery
Multimodal RAG System:
- Build a document Q&A system:
- Embed images and text using CLIP or multimodal embeddings
- Store in vector database (Weaviate, Qdrant, Chroma)
- Retrieve relevant images based on text queries
- Generate answers combining visual and textual context
Evaluation & Testing:
- Benchmark on VQAv2 or MMBench datasets
- Measure hallucination using POPE
- Calculate CLIP Score for image-text alignment
- Create custom test sets for domain-specific applications
- Implement safety checks for visual content (NSFW, bias)
References
-
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., … & Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision. ICML 2021. arXiv:2103.00020. ↩︎
-
Alayrac, J. B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., … & Simonyan, K. (2022). Flamingo: A Visual Language Model for Few-Shot Learning. NeurIPS 2022. arXiv:2204.14198. ↩︎
-
Li, J., Li, D., Savarese, S., & Hoi, S. (2023). BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. ICML 2023. arXiv:2301.12597. ↩︎
-
Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2023). Visual Instruction Tuning. NeurIPS 2023. arXiv:2304.08485. ↩︎
-
Li, Y., Du, Y., Zhou, K., Wang, J., Zhao, W. X., & Wen, J. R. (2024). Evaluating Object Hallucination in Large Vision-Language Models. EACL 2024. arXiv:2402.15721. ↩︎